
Rodriguez’s team studied maps of the Martian surface and found the large crater, now named Pohl. Based on Pohl’s position on previously dated rocks, the team believes the crater is about 3.4 billion years old — an extraordinarily long time ago, shortly after the first signs of life we know of appeared on Earth. According to the research team’s models, the asteroid impact could have been so intense that material from the seafloor may have dislodged and been carried in the water’s debris flows. Based on the size of the crater, the team believes the impacting asteroid could have been 1.86 miles wide or 6 miles wide, depending on the amount of ground resistance the asteroid encountered. The impact could have released between 500,000 megatons and 13 million megatons of TNT energy (for comparison, the Tsar Bomba nuclear test was about 57 megatons of TNT energy.) “A clear next step is to propose a landing site to investigate these deposits in detail to understand the ocean’s evolution and potential habitability,” Rodriguez said. “First, we would need a detailed geologic mapping of the area to reconstruct the stratigraphy. Then, we need to connect the surface modification history to specific processes through numerical modeling and analog studies, including identifying possible mud volcanoes and glacier landforms.”
Read more of this story at Slashdot.